Sensitivity analysis for assessing robustness of position- based predictive energy management strategy for fuel cell hybrid electric vehicle
نویسندگان
چکیده
Under hilly road conditions, it is difficult to achieve near-optimal performance of energy management strategy (EMS) of fuel cell hybrid electric vehicle (FCHEV). In order to achieve near-optimality, optimal state reference trajectory is predicted based on future information, and thus reference tracking controller is often considered as real-time predictive EMS. There are two approaches depending on in what way the predicted reference will be used as follows: 1) position-based predictive EMS for tracking positiondependent reference, 2) time-based predictive EMS for tracking time-dependent reference. In this paper, analytical sensitivity analysis based on Pontryagin’s minimum principle (PMP) is performed to prove robustness of position-based predictive EMS with respect to velocity uncertainty. First, optimal control problem is formulated in time and position domain, and PMP approach is used to derive boundary value problem (BVP) that achieves global optimality. Then, sensitivity differential equations are developed which describe sensitivity of original BVP with respect to velocity uncertainty. Finally, these equations will be solved simultaneously with the original BVP to compute first-order sensitivity of timeand positiondependent optimal state. Results show that sensitivity of time-dependent optimal state is much bigger than that of position-dependent optimal state because velocity uncertainty can change predicted travel time, and this effect on sensitivity is significant. Therefore, predictive EMS should use current position to track position-dependent optimal state reference in terms of the robustness with respect to velocity uncertainty.
منابع مشابه
A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle
Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...
متن کاملMulti-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State
The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...
متن کاملOptimal power management of fuel cell hybrid vehicles
This paper presents a control strategy developed for optimizing the power flow in a Fuel Cell Hybrid Vehicle structure. This method implements an on-line power management based on the optimal fuzzy controller between dual power sources that consist of a battery bank and a Fuel Cell (FC). The power management strategy in the hybrid control structure is crucial for balancing between efficiency an...
متن کاملHierarchical Control Strategy of Heat and Power for Zero Energy Buildings including Hybrid Fuel Cell/Photovoltaic Power Sources and Plug-in Electric Vehicle
This paper presents a hierarchical control strategy for heat and electric power control of a building integrating hybrid renewable power sources including photovoltaic, fuel cell and battery energy storage with Plug-in Electric Vehicles (PEV) in smart distribution systems. Because of the controllability of fuel cell power, this power sources plays the main role for providing heat and electric p...
متن کاملBattery and generator sizing of series hybrid electric vehicle based on experimental data and standard cycles simulation
Hybrid electric vehicles are getting more attention due to the fuel consumption and emission issue in megacities. Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended hybrid electric vehicles. Iran khodro Powertrain Company has unveiled a series of hybrid electric vehicles and is improving its performance constantly. In the present ...
متن کامل